
Governing AI Agents with MCP

• Why?
• Uncontrolled LLM behavior becomes a material platform risk.

• LLMs are probabilistic systems
• Problems:

• Cannot self-govern scope
• Cannot stop

• Introduce mandatory control layer – Planner MCP
• Converts

• Unstructured user intent -> Validated and Governed execution plans
• Without granting models execution authority

Risk we should address
• Architecture Issues (With AI agents):

• AI agents acts beyond user intent
• Modify system without approval
• Modify scope silently
• Hallucination
• Failure handling

Our Goal

• Determinism
• Intent to Plan

• Safety
• Prevent execution without approval

• Governance
• Enforce policies, schema

How to achieve Goal ? -> MCP

• Its control pane
• Controls the context that model sees
• Governs what role the model is allowed to play
• Output schema enforcement
• Failure handling

• Authority lives outside the model

Planner MCP

• Governed AI planning Service
• Uses LLMs for reasoning
• Produces machine-enforceable plans
• Generated the *JSON blueprint
• Explicit Contracts

• Deterministic Behavior

Architecture

Architecture

• Stateless service
• LLM must be used as planner only mode
• Output should follow contract – Blueprint
• No tools execution
• The model sees only

• Fixed system role
• User intent
• JSON schema
• Policy rules

• It never sees
• Execution tools
• File Systems
• Databases
• Secrets

Architecture

• Contractual Output
• JSON Schema
• We need to explicitly tell model to follow blueprint

• Should not introduce any additional properties
• It should reject invalid output

• Retry and self heal
• Bounded retries with Retry counter
• Should correct error automatically

Authority

• LLM
• Only for Reasoning

• MCP
• Validation & Governance

Tasks

• Planner MCP (Model Context Protocol)
• Goal

• Build a governed AI planning service that converts unstructured user intent into a
validated, auditable JSON blueprint, with zero execution authority.

• Out of Scope
• Execution, deployment, file modification, DB access, approvals.

• Acceptance Criteria
• LLM Model should only be used for reasoning
• Blueprint output strictly validated via JSON schema
• Deterministic retry / Self heal
• Failure handling capability
• Blueprint – Persist as Immutable Artifact
• No tools / no execution paths exposed to LLM

T1 - Define Blueprint Contract (Schema)

• Define the canonical machine-enforceable blueprint schema
used by Planner MCP in JSON format

• Acceptance Criteria
• JSON Schema created
• Add attribute in JSON schema as “additionalProperties” and set to false
• Required field enforced
• Version

• Store it in folder name “Schema” with filename as
“blueprint_v1.Json”

JSON template

• Schema
• Title
• Type
• additionalProperties=false
• RequiredEntities – Intent, Stack identification,

Rules/Constraints/verification
• Properties

• Intent : {}
• Stack: {}
• executionPlan:{}
• Rules
• Verification

T2 – Context Builder (MCP Core)

• Implement MCP Context Construction
• Implement MCP Context Construction

• Acceptance Criteria
• Fixed planner-only system prompt
• No tools
• No execution hints
• Schema enforced

• Code file – core / planner_context_builder.py

T3 – LLM Client

• Feature Configuration for LLM Client
• Anthropic / GPT

• Acceptance Criteria
• Configurable Temperature = 0
• Configurable max_tokens = 10000
• Configurable model name = <modelName>
• No Tools

T4 – Schema validation

• Validate Blueprint against Schema
• Code – core/planner_schema_validator.py

• Acceptable Criteria
• Validate the generated blueprint
• Return the blueprint

T5 – Policy Enforcement

• Enforce Org & Safety Policies
• Configuration for policy enforcement

• [“delete_database”, “delete_data”]
• Function to enforce the policy into template at runtime

T6 – Retry and Auto Heal

• Deterministic Retry & Self heal
• Code – core / planner_retry.py

• Acceptance Criteria
• Config for Max retry
• Retry function Implementation

T7 – Store Blueprint – Blob / S3

• Persist Blueprint as Immutable Artifact
• Code -> storage/planner_blueprint_store.py

• Acceptable Criteria
• Configuration to store the blueprint data sources

• Blob/S3
• Mongo
• Shared Drive

• Function to read the config and store the blueprint

T8 - Planner Orchestration

• End to end planner flow
• Code -> core/planner.py

• Acceptance Criteria
• Generate Blueprint function

• Retry (Failure handling)
• ValidateBlueprint
• EnforcePolicy
• Store generated blueprint

T9 – MCP Endpoint

• Expose MCP endpoint for planner
• Code - api/app.py

• Acceptance Criteria
• Expose an endpoint for planner
• Configuration to load the schema from blob
• Configuration to load the version of a schema to load
• Load the schema
• Pass user intent + schema to generate_blueprint function

	Slide 1: Governing AI Agents with MCP
	Slide 2: Risk we should address
	Slide 3: Our Goal
	Slide 4: How to achieve Goal ? -> MCP
	Slide 5: Planner MCP
	Slide 6: Architecture
	Slide 7: Architecture
	Slide 8: Architecture
	Slide 9: Authority
	Slide 10: Tasks
	Slide 11: T1 - Define Blueprint Contract (Schema)
	Slide 12: JSON template
	Slide 13: T2 – Context Builder (MCP Core)
	Slide 14: T3 – LLM Client
	Slide 15: T4 – Schema validation
	Slide 16: T5 – Policy Enforcement
	Slide 17: T6 – Retry and Auto Heal
	Slide 18: T7 – Store Blueprint – Blob / S3
	Slide 19: T8 - Planner Orchestration
	Slide 20: T9 – MCP Endpoint

