Governing Al Agents with MCP

« Why?
* Uncontrolled LLM behavior becomes a material platform risk.

* LLMs are probabilistic systems
* Problems:
* Cannot self-govern scope
 Cannot stop

* Introduce mandatory control layer - Planner MCP

e Converts

* Unstructured user intent -> Validated and Governed execution plans
* Without granting models execution authority



Risk we should address

* Architecture Issues (With Al agents):
* Al agents acts beyond user intent

Modify system without approval

Modify scope silently

Hallucination

Failure handling



Our Goal

e Determinism
* |Intent to Plan

e Safety
* Prevent execution without approval

* Governance
* Enforce policies, schema



How to achieve Goal ? -> MCP

* |ts control pane
* Controls the context that model sees
 Governs what role the model is allowed to play
* Output schema enforcement
* Failure handling

* Authority lives outside the model



Planner MCP

* Governed Al planning Service
* Uses LLMs for reasoning
* Produces machine-enforceable plans
* Generated the *JSON blueprint
* Explicit Contracts

e Deterministic Behavior



Architecture

Planner McP

Fixed planner role

Context Construction

User Request

LLM Invocation

Schema Validation

Policy Enforcement

Retry § Self-Heal

—)‘ JSON Blueprint




Architecture

Stateless service

LLM must be used as planner only mode
Output should follow contract — Blueprint
No tools execution

The model sees only
* Fixed system role
* Userintent
* JSON schema
* Policyrules

* [t never sees
* Execution tools
* File Systems
* Databases
* Secrets



Architecture

* Contractual Output
* JSON Schema

* We need to explicitly tell model to follow blueprint
* Should not introduce any additional properties

* |t should reject invalid output

* Retry and self heal

* Bounded retries with Retry counter
* Should correct error automatically



Authority

* LLM

* Only for Reasoning

* MCP

* Validation & Governance



Tasks

* Planner MCP (Model Context Protocol)
* Goal

* Build a governed Al planning service that converts unstructured user intent into a
validated, auditable JSON blueprint, with zero execution authority.

* Out of Scope
* Execution, deployment, file modification, DB access, approvals.

* Acceptance Criteria
* LLM Model should only be used for reasoning
* Blueprint output strictly validated via JSON schema
* Deterministic retry / Self heal
* Failure handling capability
* Blueprint — Persist as Immutable Artifact
* Notools / no execution paths exposedto LLM



T1 - Define Blueprint Contract (Schema)

* Define the canonical machine-enforceable blueprint schema
used by Planner MCP in JSON format

* Acceptance Criteria
e JSON Schema created

* Add attribute in JSON schema as “additionalProperties” and set to false
* Required field enforced

* \ersion

e Storeitin folder name “Schema” with filename as
“blueprint_v1.Json”



JSON template

* Schema

 Title

* Type

* additionalProperties=false

* RequiredEntities — Intent, Stack identification,
Rules/Constraints/verification

* Properties
* Intent: {}
e Stack: {}
* executionPlan:{}
* Rules
* Verification



T2 — Context Builder (MCP Core)

* Implement MCP Context Construction
* Implement MCP Context Construction

* Acceptance Criteria
* Fixed planner-only system prompt
* No tools
* No execution hints
* Schema enforced

* Code file = core / planner_context_builder.py



T3 - LLM Client

* Feature Configuration for LLM Client
* Anthropic/ GPT

* Acceptance Criteria
* Configurable Temperature =0
* Configurable max_tokens = 10000
* Configurable model name = <modelName>
* No Tools



T4 — Schema validation

* Validate Blueprint against Schema
 Code -core/planner_schema_validator.py

* Acceptable Criteria
* Validate the generated blueprint
* Return the blueprint



T5 - Policy Enforcement

* Enforce Org & Safety Policies

* Configuration for policy enforcement
* [“delete_database”, “delete_data”]

* Function to enforce the policy into template at runtime



16 — Retry and Auto Heal

* Deterministic Retry & Self heal
e Code -core/ planner_retry.py

* Acceptance Criteria

* Config for Max retry
* Retry function Implementation



T7 —Store Blueprint — Blob / S3

* Persist Blueprint as Immutable Artifact
* Code -> storage/planner_blueprint_store.py

* Acceptable Criteria

* Configuration to store the blueprint data sources
* Blob/S3
* Mongo
e Shared Drive
* Function to read the config and store the blueprint



T8 - Planner Orchestration

* End to end planner flow
 Code -> core/planner.py

* Acceptance Criteria

* Generate Blueprint function
* Retry (Failure handling)
* ValidateBlueprint
* EnforcePolicy
* Store generated blueprint



T9 - MCP Endpoint

* Expose MCP endpoint for planner
 Code - api/app.py

* Acceptance Criteria

* Expose an endpoint for planner
Configuration to load the schema from blob
Configuration to load the version of a schema to load
Load the schema
Pass user intent + schema to generate_blueprint function



	Slide 1: Governing AI Agents with MCP
	Slide 2: Risk we should address
	Slide 3: Our Goal
	Slide 4: How to achieve Goal ? -> MCP
	Slide 5: Planner MCP
	Slide 6: Architecture
	Slide 7: Architecture
	Slide 8: Architecture
	Slide 9: Authority
	Slide 10: Tasks
	Slide 11: T1 - Define Blueprint Contract (Schema)
	Slide 12: JSON template
	Slide 13: T2 – Context Builder (MCP Core)
	Slide 14: T3 – LLM Client
	Slide 15: T4 – Schema validation
	Slide 16: T5 – Policy Enforcement
	Slide 17: T6 – Retry and Auto Heal
	Slide 18: T7 – Store Blueprint – Blob / S3
	Slide 19: T8 - Planner Orchestration
	Slide 20: T9 – MCP Endpoint

